63z=49+15z^2

Simple and best practice solution for 63z=49+15z^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 63z=49+15z^2 equation:



63z=49+15z^2
We move all terms to the left:
63z-(49+15z^2)=0
We get rid of parentheses
-15z^2+63z-49=0
a = -15; b = 63; c = -49;
Δ = b2-4ac
Δ = 632-4·(-15)·(-49)
Δ = 1029
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1029}=\sqrt{49*21}=\sqrt{49}*\sqrt{21}=7\sqrt{21}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-7\sqrt{21}}{2*-15}=\frac{-63-7\sqrt{21}}{-30} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+7\sqrt{21}}{2*-15}=\frac{-63+7\sqrt{21}}{-30} $

See similar equations:

| 14-(2x+8)2=6 | | 7x^2-22x-4=0 | | -19+9w=-3w+5 | | 2f+16+7f=-10+7f | | n-13/4+n+4/5=7/10 | | 5(3n-1)+8=3(5n+3) | | 2(10x-8)+136=180 | | 37/84x=37 | | (3y-1)/2=7 | | x2+9x-112=0 | | 6.2=(7−x)/0.2 | |  (9+u)(2u+5)=0  | | -288=-6(6+6n) | | -5x-2=4-3x | | 7x=18x-35 | | 8.230x10^4=82300 | | -17s=20-18s | | 2(x+10)+3x=35 | | 9m=4m-30 | | 7x=18x | | 8-10p=-6-11p | | y=1-15 | | x2/9=1/3 | | .=y12.88 | | 7=5x-1 | | 9w+5=-3w-19 | | -5u=-4u+10 | | 63z=49+15z2 | | -6+11x=11x-6 | | 450=40x | | 4y+22y+10=0 | | a×1-5=-8 |

Equations solver categories